
Eur. Phys. J. B 20, 555–559 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Optimal trading from minimizing the period of bankruptcy risk
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Abstract. Assuming that financial markets behave similar to random walk processes we derive a trading
strategy with variable investment which is based on the equivalence of the period of bankruptcy risk and
the risk to profit ratio. We define a state dependent predictability measure which can be attributed to the
deterministic and stochastic components of the price dynamics. The influence of predictability variations
and especially of short term inefficiency structures on the optimal amount of investment is analyzed in
the given context and a method for adaptation of a trading system to the proposed objective function is
presented. Finally we show the performance of our trading strategy on the DAX and S&P 500 as examples
for real world data using different types of prediction models in comparison.

PACS. 89.90.+n Other topics in areas of applied and interdisciplinary physics – 02.50.Ey Stochastic
processes – 05.45.Tp Time series analysis

1 Introduction

The theory of efficient markets denies the possibility
for finding a profitable trading system which is able to
forecast future market behavior [3]. In contrast to that
theory there are successes of expert traders and also of
trading systems which can only be explained by tempo-
rary inefficiency margins in the market and consequently
by information not incorporated in the current market
prices [17]. If such periods of inefficiency and the asso-
ciated fluctuations of predictability are not recognized
by the trading models they cause undesired variations
in their performance. Further, almost all trading and
portfolio selection strategies take into account that beside
maximization of profit a very important objective for
optimizing trading systems with finite reserve fund is also
a simultaneous minimization of risk [11,14].
Inspired by these developments we present a method
for training an appropriate trading system for direct
estimation of the optimal amount of investment, mo-
tivated by the objective to minimize the period of
bankruptcy risk. We show that this objective is related to
a common performance measure in finance and fulfills the
requirements stated above. Despite new insights in the
stochastic nature of price fluctuations, in particular that
they obey truncated Lévy flights [7–10] and not Wiener
processes, the latter is still very common in portfolio
analysis techniques [2]. The reason is that all Lévy stable
processes with α < 2 have infinite variance which leads
to fundamental problems when applied to finance, where
the second moment is related to risk estimation [6].
Therefore, we also make use of the Gaussian assumption
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in order to embed our work in that field.
Our derivation of the trading strategy is based on the
concept of a random walk with state dependent drift
and variance for the description of profit evolution. The
assumption of state dependency takes into account sig-
nificant deviations from stationarity of market dynamics
[5]. Here, this leads to time dependent strengths of
stochastic and deterministic components of the random
walk process. Based on the probability for gaining or
loosing money a predictability measure will be defined.
A reasonable objective function for finding the optimal
amount of investment depending on the current market
predictability such that profit and risk are optimized
could be the risk to profit ratio. This measure is quite
similar to the inverse Sharpe Ratio [14], neglecting
the return of a risk–less security. We show that this
objective is equivalent to the minimization of the period
of bankruptcy risk and finally we present a method
for training a trading system which directly estimates
the optimal investment and the expected return. In the
context of the results on the DAX and S&P 500 with
a discrete state space (DSS) model and a radial basis
function (RBF) neural network as predictive models, we
emphasize the necessity of using trading models with
variable investments in order to react to changing market
predictability and to reduce the variance in gained profit.

2 Theory

Previous work demonstrated a close relation between dif-
fusion processes in physical systems and the evolution
of prices in financial markets [1,4,16]. On that basis we
assume that also the evolution of profit g(xn) can be
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described by a discrete random walk with state dependent
drift and variance terms:

g(xn) = µ̄(xn)τ + σ(xn)∆X. (1)

τ denotes a constant time interval between successive trad-
ing events, µ̄(xn) the local profits and σ(xn)2 the lo-
cal variances. The series {xn}Nn=1 of market state vec-
tors incorporates all available informations which are used
for generating trading decisions. The market state vector
can e.g. be constructed by embedding [15] the time se-
ries of returns rn into a space of embedding dimension
ne: xn = {rn−1; . . . ; rn−ne} ∈ Rne . The returns are de-
termined by the logarithmic differences of prices pn, so
rn = log(pn+1)− log(pn).
As stated in the introduction we assume a Wiener process
for the random variable ∆X = Ψ

√
τ with

Prob(Ψ ∈ [φ, φ+ dφ]) =
e−φ

2/2

√
2π

dφ =: ϕ(φ)dφ. (2)

In this framework the stochastic and deterministic com-
ponents of the process can be identified with the terms in
equation (1). The stochastic component incorporates all
non-predictable fluctuations caused by new information
entering the market or by irrationality in the investors’
decision processes. The deterministic component is due to
inefficiencies in the financial market which are assumed to
be detected by an appropriate trading system. The latter
would cause a positive drift in the cumulated profit. The
relative strengths of both components will in general ex-
hibit a very complex time varying behavior.
A local predictability ωn, based on the probability (or hit
quota) η(xn) = Prob(g(xn) > 0) of obtaining a positive
profit at time nτ , can be defined as follows:

ω(xn) = 2η(xn)− 1 = 2Φ0

(
µ̄(xn)
σ(xn)

√
τ

)
, (3)

with Φ0(z) =
∫ z

0 ϕ(φ)dφ = erf(z) − 1
2 . It is obvious that

the interplay of variations in the both components men-
tioned above affect the behavior of predictability. Other
definitions, inspired e.g. by information theory can also
be found in literature [12]. Definition (3) limits the pre-
dictability measure to ω(xn) ∈ [−1; 1] whereby negative
values can only be due to systematically wrong predictions
of the trading system, which, by inversion, would also ex-
hibit predictive power.
Up to now only the local behavior of the stochastic process
at state xn is characterized. With regard to the purpose
of trading optimization on the global dynamics the mean
process with respect to the state space (and not to the
realizations of the stochastic process) can be expressed as

ḡ =
∫
g(x)p(x)dx = µ̄τ + σ∆X, (4)

with mean profit µ̄ =
∫
µ̄(x)p(x)dx, mean variance

σ2 =
∫
σ(x)2p(x)dx and a state density function p(x).

With probability
∫ λ
−λ ϕ(φ)dφ the cumulated profit Gn

after n successive trading events will be found in the
confidence region Gn ∈ [Cn(−λ);Cn(λ)], with Cn(λ) =
µ̄nτ +λσ

√
nτ . This interval is symmetric around the evo-

lution of cumulated mean profit and parameter λ deter-
mine the width of the interval in units of σ.
At the beginning of trading the confidence region has a
significant component of negative profit (loss of money)
which signifies a certain time of risk t0 where Gn could be
negative. This corresponds to a substantial probability to
go bankrupt if no sufficient amount of reserve fund Gf is
available. The reserve fund Gf is necessary with highest
probability after time tf . Time of risk and reserve fund are
given by

t0 = λ2σ
2

µ̄2
(5)

tf =
t0
4

and Gf = −Ctf (−λ) = µ̄
t0
4
· (6)

Minimization of t0 means minimization of risk to profit
ratio over the specified trading period. This fulfills ex-
actly the requirements for an optimal investment signal.
Therefore, using the confidence level λ = 1, we define t0
as the objective function for the optimization process of
the trading system. Neglecting the return of a risk-less
security this objective corresponds to the inverse squared
Sharpe ratio [14]. Our derivation shows that the usage
of the Sharpe ratio as a performance measure can be
motivated and interpreted nicely within the framework of
stochastic processes.

For the final form of objective function (5) we have to
specify how the trading decision influences the profit. We
assume a trading system is given which provides an in-
vestment signal a(xn) that quantifies the volume of stock
order depending on a market state vector xn. The result-
ing profit g(xn) with respect to the return rn is then given
by g(xn) = a(xn)rn. This yields to:

t̂0 =
1
T

∑N
n=1 a(xn)2 (r(xn)− r̄(xn))2(

1
T

∑N
n=1 a(xn)r(xn)

)2 · (7)

Mean local return r̄(xn) as well as sign and magnitude
of the investment signal a(xn) remain to be estimated by
two successive steps with appropriate models and meth-
ods. For approximation of the mean local return, any type
of models can be optimized using standard algorithms
like least–squares techniques with gradient descent. As-
suming a given return model r̃(xn) = h(Ξ,xn), with
parameter vector Ξ, adaptation of the trading system
a(xn) = f(Θ,xn) can be performed in a second step by
gradient descent or other suitable methods on the objec-
tive function equation (7).

3 Models and parameter estimation

3.1 Discrete state space model

The first prediction model for our simulations is a discrete
state space (DSS) model. Discretization is done by taking
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only the signs of each input component of the original
state vector xn which leads to 2ne possible combinations
of signs. So, the transformation to the discrete state sn of
the DSS model at trading event n can be described by the
mapping function q: Rne → [1; . . . ; 2ne ] with sn = q(xn).
Due to this discretization of state space the estimations of
the model are given by the averages over all returns with
respect to their state

r̃(xn) = 〈r(xn′)〉q(xn), (8)

and by an appropriate expression for the investments de-
rived by the condition ∇Θ t̂0 = 0

a(xn) = c

〈
r(xn′)

(r(xn′ )− r̃(xn′))2

〉
q(xn)

. (9)

c is a constant and 〈·〉q(xn) the average over all time steps
n′ whose state sn′ is equal to state sn = q(xn).

3.2 RBF model

The radial basis function (RBF) neural network of Moody
Darken type [13] has the functional form

ỹn =
∑
i wigi(xn)∑
j gj(xn)

with gi(xn) = e−(xn−zi)
2/2σ2

i (10)

with parameters wi, zi and σi. In our application the
network output ỹn represents the estimated mean re-
turn r̃(xn) or the investment signal a(xn). Training is
performed as usually by an unsupervised adaptation of
centers zi and width σi of Gaussians gi using K-means
clustering, in case of the return model a linear matrix in-
version technique finally adjusts the second layer weights
wi. For adaptation of the trading model f(Θ,xn) a su-
pervised gradient training using equation (7) is applied
to the weights. Over-fitting is avoided by using only a
small number of Gaussians and controlling the generaliza-
tion performance on test data. The number of radial basis
function centers zi is set to be 2ne for reasons of compara-
bility between the DSS model and the RBF network. That
choice implies the same number of effective parameters in
both types of models.

3.3 Parameter estimation

For approximation of the local mean return and the invest-
ment signal a gradient descent on the objective function
(7) is used. The consideration of the constraint

1
T

N∑
n=1

|a(xn)| = A
!= const. (11)

ensures a constant mean absolute investment despite local
changes during the optimization procedure. The gradient

Table 1. The quantitative results of risk to profit ratios t̂0 are
shown for simulations on time series of DAX and S&P 500 close
values using the DSS model, a RBF network and the respective
constant investment versions (sgn).

DAX S&P 500
Train Test Train Test

DSS t̂0 = 35.1 2009.4 96.5 129.7
DSS (sgn) t̂0 = 53.3 1233.1 126.9 154.5

RBF t̂0 = 77.0 243.8 80.1 127.6
RBF (sgn) t̂0 = 162.1 1411.4 103.3 451.5

of t̂0 with respect to the parameter vector Θ is

∇Θ t̂0 =
1
N

N∑
n=1

∇Θa(xn)
(

2a(xn)∆r(xn)2

µ̂2

−2t̂0r(xn)
µ̂

− βsgn(a(xn))
)
, (12)

with ∆r(xn) = r(xn)− r̃(xn) and Lagrange multiplier

β =
NA− t̂0µ̂

∑N
n=1 r(xn)sgn(a(xn))∆r(xn)−2

1
2 µ̂

2
∑N
n=1∆r(xn)−2

· (13)

4 Application to DAX and S&P 500

We demonstrate the performance of our trading strategy
with two real financial time series and compare it to a con-
stant investment strategy. Latter strategy gives a constant
trading signal in the direction of expected return. There-
fore, it does not use any volatility information. For reason
of comparability the investment signals of both strategies
are normalized to the same amount of mean absolute in-
vestment over the whole trading period. In the case of
variable investment, the maximal amount of absolute in-
vestment is limited to five times its mean because also in
real trading the possible investment is in general restricted
to some maximum value.
For testing the generalization ability we use the first 70%
of the data in the training procedure, the remaining pat-
terns are excluded from training and used for the test pur-
pose. The time series of returns are transformed to zero
mean, so that all profit gained by the trading system is
excess profit exceeding the possible profit by the simple
usage of a buy-and-hold strategy.
The available time series of German Stock Market Index
(DAX) consists of 2340 daily close prices of an almost 10
year period from 11/26/1990 until 03/17/2000. The time
series of the Standard & Poor’s 500 Index (S&P 500) con-
sists of 5109 daily close prices of about a 20 year period
from 02/01/1980 until 03/17/2000. In both cases we use
an embedding dimension ne = 5 for adaptation of the dif-
ferent types of prediction models. As stated above, this
leads to the choice of 32 centers in the RBF network in
order to ensure comparability between the models. Table 1
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a) RBF network, DAX
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b) RBF network, S&P 500
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Fig. 1. Evolution of cumulated profit and absolute investments |a(xn)| while trading with RBF networks as prediction
models. (a) shows trading on the DAX time series, (b) on S&P 500 time series, each in comparison to constant investment
signals. Curves of expected profit evolution and the border of 95% confidence region (λ = 2) are added in order to
demonstrate the correspondence between trading model and real market behavior.

shows the final risk to profit ratios t̂0 of both models and
their constant investment versions.
Generally the performance of both types of models de-
creases if they are used on the test data sets. This con-
cerns especially the simulation on the DAX which can be
explained by changes in the fundamental market dynamics
(non–stationarities) and by the crash and strong correc-
tion in the year 1998 which lies in the test data. Obvi-
ously the RBF model is able to handle these dynamical
processes better than the DSS model. On the S&P 500
both kinds of models shows quite similar t̂0 values with
a small superiority of the RBF network. Figures 1a and
b demonstrate the profit evolution of the RBF model on
both data sets together with the expected profit evolution
and the confidence curves for λ = 2. A very remarkable
result is, that besides the more or less quiet market behav-
ior also strong market movements, e.g. during the period

of strong market corrections in 1998 at the DAX data,
are estimated quite well. The comparison to the constant
investment versions of our trading models shows a signif-
icant drop in performance in all cases, except the DSS
model and DAX test data set. Latter can be explained by
the difficulties of the DSS model in dealing with the mar-
ket dynamic during the specified time region as specified
above. Such situations can be detected by checking the
confidence of the current profit evolution.

5 Summary

We derived an strategy with variable investments for trad-
ing in financial markets which are subject to changes in
predictability of their dynamics. We motivated the pro-
posed strategy by the equivalence of the period of bank-
ruptcy risk and the risk to profit ratio which could be
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derived in the framework of stochastic processes.
We demonstrated the performance of our trading strategy
with a DSS model and a RBF neural network as predic-
tion models on two real financial time series – the DAX
and the S&P 500 – and could show that the variable in-
vestment strategy and the used prediction models could
mostly capture the main dynamical characteristics of the
time series. Furthermore we provided a confidence estima-
tion for an on-line evaluation of trading systems.

We acknowledged support of the Deutsche Forschungsgemein-
schaft (grant Pa569/2–1).
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